94 research outputs found

    A genetically encoded reporter of synaptic activity in vivo

    Get PDF
    To image synaptic activity within neural circuits, we tethered the genetically encoded calcium indicator (GECI) GCaMP2 to synaptic vesicles by fusion to synaptophysin. The resulting reporter, SyGCaMP2, detected the electrical activity of neurons with two advantages over existing cytoplasmic GECIs: it identified the locations of synapses and had a linear response over a wider range of spike frequencies. Simulations and experimental measurements indicated that linearity arises because SyGCaMP2 samples the brief calcium transient passing through the presynaptic compartment close to voltage-sensitive calcium channels rather than changes in bulk calcium concentration. In vivo imaging in zebrafish demonstrated that SyGCaMP2 can assess electrical activity in conventional synapses of spiking neurons in the optic tectum and graded voltage signals transmitted by ribbon synapses of retinal bipolar cells. Localizing a GECI to synaptic terminals provides a strategy for monitoring activity across large groups of neurons at the level of individual synapses

    The Sveconorwegian orogeny: reamalgamation of the fragmented southwestern margin of Fennoscandia

    Get PDF
    The Sveconorwegian orogeny encompasses magmatic, metamorphic and deformational events between ca. 1140 and 920 Ma at the southwestern margin of Fennoscandia. In recent years, the tectonic setting of this nearly 200 Myr-long evolution has been debated, with some workers arguing for collision with an unknown continent off the present-day southwest coast of Norway, and others advocating accretionary processes inboard of an active margin. Recently, it has been suggested that orogeny may have been gravity-driven by delamination and foundering of heavy subcontinental lithospheric mantle in an intraplate setting, in some ways similar to proposed sagduction processes in the Archaean. Resolving the tectonic setting of the Sveconorwegian orogen has implications for correlation with other orogens and Rodinia supercontinent reconstructions and for assessments of the evolution of plate tectonics on Earth, from the Archaean to the present. Here, we present new mapping and geochronological data from the Bamble and Telemark lithotectonic units in the central and western Sveconorwegian orogen – the former representing a critical region separating western parts of the orogen that underwent long-lived high- to ultrahigh-temperature metamorphism and magmatism from parts closer to the orogenic foreland that underwent episodic high-pressure events. The data show that the units constituting the Sveconorwegian orogen most likely formed at the southwestern margin of Fennoscandia between ca. 1800 and 1480 Ma, followed by fragmentation during widespread extension between ca. 1340 and 1100 Ma marked by bimodal magmatism and sedimentation. A summary of Sveconorwegian magmatic, metamorphic and depositional events in the different units shows disparate histories prior to their assembly with adjacent units. The most likely interpretation of this record seems to be that episodic, Sveconorwegian metamorphic and deformational events in the central and eastern parts of the orogen represent accretion and assembly of these units. This process most likely took place behind an active margin to the southwest that sustained mafic underplating in the proximal back-arc, resulting in high- to ultrahigh-temperature metamorphism in the western parts. In this interpretation, all features of the Sveconorwegian orogen are readily explained by modern-style plate tectonic processes and hypotheses involving some form of vertical, intraplate tectonics are not supported

    Astrocyte-mediated short-term synaptic depression in the rat hippocampal CA1 area: two modes of decreasing release probability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Synaptic burst activation feeds back as a short-term depression of release probability at hippocampal CA3-CA1 synapses. This short-term synaptic plasticity requires functional astrocytes and it affects both the recently active (< 1 s) synapses (post-burst depression) as well as inactive neighboring synapses (transient heterosynaptic depression). The aim of this study was to investigate and compare the components contributing to the depression of release probability in these two different scenarios.</p> <p>Results</p> <p>When tested using paired-pulses, following a period of inactivity, the transient heterosynaptic depression was expressed as a reduction in the response to only the first pulse, whereas the response to the second pulse was unaffected. This selective depression of only the first response in a high-frequency burst was shared by the homosynaptic post-burst depression, but it was partially counteracted by augmentation at these recently active synapses. In addition, the expression of the homosynaptic post-burst depression included an astrocyte-mediated reduction of the pool of release-ready primed vesicles.</p> <p>Conclusions</p> <p>Our results suggest that activated astrocytes depress the release probability via two different mechanisms; by depression of vesicular release probability only at inactive synapses and by imposing a delay in the recovery of the primed pool of vesicles following depletion. These mechanisms restrict the expression of the astrocyte-mediated depression to temporal windows that are typical for synaptic burst activity.</p

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Effects of Transport Inhibitors on the Cellular Uptake of Carboxylated Polystyrene Nanoparticles in Different Cell Lines

    Get PDF
    Nanotechnology is expected to play a vital role in the rapidly developing field of nanomedicine, creating innovative solutions and therapies for currently untreatable diseases, and providing new tools for various biomedical applications, such as drug delivery and gene therapy. In order to optimize the efficacy of nanoparticle (NP) delivery to cells, it is necessary to understand the mechanisms by which NPs are internalized by cells, as this will likely determine their ultimate sub-cellular fate and localisation. Here we have used pharmacological inhibitors of some of the major endocytic pathways to investigate nanoparticle uptake mechanisms in a range of representative human cell lines, including HeLa (cervical cancer), A549 (lung carcinoma) and 1321N1 (brain astrocytoma). Chlorpromazine and genistein were used to inhibit clathrin and caveolin mediated endocytosis, respectively. Cytochalasin A and nocodazole were used to inhibit, respectively, the polymerisation of actin and microtubule cytoskeleton. Uptake experiments were performed systematically across the different cell lines, using carboxylated polystyrene NPs of 40 nm and 200 nm diameters, as model NPs of sizes comparable to typical endocytic cargoes. The results clearly indicated that, in all cases and cell types, NPs entered cells via active energy dependent processes. NP uptake in HeLa and 1321N1 cells was strongly affected by actin depolymerisation, while A549 cells showed a stronger inhibition of NP uptake (in comparison to the other cell types) after microtubule disruption and treatment with genistein. A strong reduction of NP uptake was observed after chlorpromazine treatment only in the case of 1321N1 cells. These outcomes suggested that the same NP might exploit different uptake mechanisms to enter different cell types

    Calcineurin Selectively Docks with the Dynamin Ixb Splice Variant to Regulate Activity-dependent Bulk Endocytosis

    Get PDF
    Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals

    Transmembrane protein topology prediction using support vector machines

    Get PDF
    Background: Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated.Results: We present a support vector machine-based (SVM) TM protein topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of 131 sequences with known crystal structures. The method achieves topology prediction accuracy of 89%, while signal peptides and re-entrant helices are predicted with 93% and 44% accuracy respectively. An additional SVM trained to discriminate between globular and TM proteins detected zero false positives, with a low false negative rate of 0.4%. We present the results of applying these tools to a number of complete genomes. Source code, data sets and a web server are freely available from http://bioinf.cs.ucl.ac.uk/psipred/.Conclusion: The high accuracy of TM topology prediction which includes detection of both signal peptides and re-entrant helices, combined with the ability to effectively discriminate between TM and globular proteins, make this method ideally suited to whole genome annotation of alpha-helical transmembrane proteins

    Coordinating the impact of structural genomics on the human α-helical transmembrane proteome

    Get PDF
    Given the recent successes in determining membrane-protein structures, we explore the tractability of determining representatives for the entire human membrane proteome. This proteome contains 2,925 unique integral α-helical transmembrane-domain sequences that cluster into 1,201 families sharing more than 25% sequence identity. Structures of 100 optimally selected targets would increase the fraction of modelable human α-helical transmembrane domains from 26% to 58%, providing structure and function information not otherwise available

    Key Physiological Parameters Dictate Triggering of Activity-Dependent Bulk Endocytosis in Hippocampal Synapses

    Get PDF
    To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity
    corecore